Gravity | Magnets | Lasers |
from IPython.display import HTML; HTML('<blockquote class="twitter-tweet"><p lang="en" dir="ltr">"Progress toward fusion energy breakeven and gain as measured against the Lawson criterion" by <a href="https://twitter.com/ScottCHsu?ref_src=twsrc%5Etfw">@ScottCHsu</a> and myself is published (open access)! GIF of achieved Lawson parameter vs temperature below shows the progress. <a href="https://t.co/VKFM1XubXR">https://t.co/VKFM1XubXR</a> <a href="https://twitter.com/hashtag/fusionenergy?src=hash&ref_src=twsrc%5Etfw">#fusionenergy</a> <a href="https://twitter.com/ARPAE?ref_src=twsrc%5Etfw">@ARPAE</a> <a href="https://twitter.com/AIP_Publishing?ref_src=twsrc%5Etfw">@AIP_Publishing</a> <a href="https://t.co/P1oNjLB8ZN">pic.twitter.com/P1oNjLB8ZN</a></p>— Sam Wurzel (@swurzel) <a href="https://twitter.com/swurzel/status/1534556521744457731?ref_src=twsrc%5Etfw">June 8, 2022</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script> ')
Capacitance = 0.290 farads
Operating Voltage = 24 kV
Peak Discharge Current = 25 kA
400 megajoules—the world's largest capacitor bank
3,840 high-voltage capacitors
KDP experiences Pockell's Effect
If an electric field is applied to the crystal, the index of refraction changes $$|\Delta n| = \frac{r}{2} n_0^3 E $$
where $r$ is the an electro-optical coefficient for KDP and $n_0$ is the initial index of refraction at $E=0$, and $\Delta n$ is the change in index of refraction
Density of electrons, $n_e$, determines reflectivity $$ \omega_p = 2\pi f_p = \sqrt{\frac{n_e e^2}{\epsilon_0 m_e}}$$
When the frequency of incoming light, $f_i$, is greater than the plasma frequency, then there is transmission of the light through the plasma $$ f_i > f_p $$
This explains why AM radio waves bounce off of the ionosphere ($n_e \approx 10^{11}$), why metals are reflective and shiny ($n_e \approx 10^{28}$), and why the surface of the sun isn't shiny ($n_e \approx 10^{20}$), and why helium plasma is used for the Pockell cell ($n_e \approx 10^{18}$)
Thus $f_i >> f_p$ means the laser will be transmitted through the helium plasma
Using double angle formulas, we get the following:
$$ P_2 = \frac{1}{2} \epsilon_0 \chi_2 E_0^2 + \frac{1}{2} \epsilon_0 \chi_2 E_0^2 \cos 2 \omega t$$import matplotlib.pyplot as plt
%matplotlib notebook
import happi; S=happi.Open(); Rho = S.Field.Field0("-Rho",cmap="Blues_r",vmax=0.01); Env_E = S.Field.Field0("Env_E_abs",cmap="hot",vmin=1,transparent="under")
happi.multiSlide(Rho,Env_E)
from IPython.display import IFrame
IFrame('./eScholarship UC item 5wb109v8.pdf', width=1200, height=600)
Badziak, J.. (2012). Laser nuclear fusion: Current status, challenges and prospect. Bulletin of the Polish Academy of Sciences, Technical Sciences. 60. 729. 10.2478/v10175-012-0084-8.